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INTRODUCTION

variations in mechanical orooerties of heat treated gun tubes have histori-
cally been a concern in the oroduction of reliable and acceotable gun tubes.
Reasons for these variations include melting and forging practice, chemistry,
heat treatment procedure, testing procedure, etc. Specifically, in this
investigation the amount of forging reduction was examined to determine if i<
causes a spread in mechanical properties from the breech to the muzzle end of
gun tubes. The objective was to show that the difference in forging reduction
between the breech and muzzle ends accounts for the difference in mechanical

oroperties from one end to the other.

/

PROCEDURE

An experimental forging was designed to cover a range of forging reductions
as jarge as possible for this investigation. The starting material selected was
a 120-mm M256 preform with excess test material which could be utilized for the
experiment. The steel was produced by electroslag remelting (ESR) methods and
oress forged in an open die operation to its initial preform dimensions. The
oreform end to be rotary forged first was machined to a tapered section 2llowing
for a range of forging reductions as it was forged into the muzzle end of a
120~-mm M256 tube (Figure 1). The extra material in the oreform was forged into
extra muzzle length in the resulting forging. The forging reduction range
selected was from 1:1 to 5:1, which was the practical 1imit of our rotary
forging equipment. This forging reduction range on the GFM-55 rotary forge,
combined with the open die press forging reduction from the starting ingot,
gives a total forging reduction range from 3.36:1 to 16.90:1 as shown in Table

. Forging reduction is defined as the ratio of the cross-sectional area of the




starting material to the cross-sectional area of the resulting forging. In the
experiment, the cross-sectional area of the tapered section of the preform was
computed at incremental locations along the lergth of the taper. Then the loca-
tion of the material in the muzzle section of the resulting 120-mm forging was
computed at these incremental locations (Table II). After forging, the tube was
heat treated in a Selas heat treat system. This is a horizontal, continuous
heat treat system used to thermally process all rotary forged production gun
tubes. Standard heat treat parameters for the 120-mm M256 gun tube were used to
heat treat this tube. Forging reduction ranges were sampled by cutting nine
test discs at the locations specified in Table II and then machining them into
test specimens as shown in Figure 2. Four tensile and four Charpy test speci-

mens were evaluated from each test disc.

RESULTS AND DISCUSSION
Mechanical

The test specimens from the nine muzzle test discs as well as a standard
breech end test disc were tested, and the results are given in Table III. The
range shown for each of the mechanical properties indicates no significant
variation in property levels along the entire length of the tube (see Figures 2
through 7). The results also show no upward or downward trend when comparing
the mechanical properties obtained within the nine muzzle discs or from treech
to muzzle ends.
Metallurgical

As-tested mechanical property samples from discs #2, #5, #7, and #9 were
metallographically prepared and metallurgically examined to determine what
effect forging had on the material's microstructural features. The samples were

examined for general microstructure, nonmetallic inclusion content/morphology,




macrostructure, and grain size. The samples selected spanned the full range of

forging reductions. None of the corresponding mechanical oroperties of these
samples displayed significant variations from disc to disc. This observation
was further supported by the general lack of microstructural variations in the
samples evaluated. A1l samples exhibited a fine-grained, tempered martensitic
microstructure indicating successful heat treatment as seen in Figures 8 and 9.
The "macrostructural” characterization showed a reasonably uniform structure
(Figures 10a and 10b), suggesting very little chemical heterogeneity in this
material.

The inclusions found in all samples were predominantly of an oxide type and
were relatively small in size and distribution (see Figure 11). The "worst
case" stringer-type inclusion found in any of the samples is identified by the
arrow in Figure 11. This inclusion, magnified in Figure 12, was identified as a
silicate. The lone microstructural variation found in these samples aopeared in
the grain size determinations. Table IV shows the average ASTM grain size for
each disc.

The general trend of this data reveals that as forging reduction ircreasec,
grain size increases. (NOTE: As grain size increases, grain size number
decreases.) This agrees well with the metallurgical theory that if all c+rer
variables for a material are comparable, the regions which experience the most
mechanical working prior to heat treatment nucleate grains faster during heat

treatment, and consequently, these grains can grow to a larger size.

SUMMARY AND CONCLUSION
A1l mechanical property values reported in this experiment showed good uni-
formity across the entire forging reduction range. The metallurgical analyses

corroborated the mechanical property results. Metallographic samples obtained




from each disc were prepared and examined and all displayed a uniform tempered
martensitic microstructure. The material's macrostructural features were also
uniform and showed no significant chemical inhomogeneity. Nonmetalilic inclusion
content/morphology was also uniform from disc to disc. The ASTM grain size was
the lone material feature showing any variation. As stated previous'y, the
grain size increased predictably as the forging reduction (or amount of mechani-
cal working) increased. The varied grain sizes, however, did not appear to
significantly affect the mechanical properties from disc to disc.

It should be noted that the material used in this experiment was a premium
guality steel produced by consumable remelting methods. The genera! lack of
sizeable nonmetall{ic inclusions in this material, especially malleable types
(i.e., sulfides), and the relative absence of chemical segregation minimizes <the
probability that ductility-related mechanical properties (percent reduction in
area (% RA) and percent elongation (% EL)) will be affected by varying forging
reduction. This also tends to make this type of experiment more approor-ate for
showing forging reduction effects on strength and toughness. Because these
properties were also uniform, it can be concluded that typical 120-mm “286
forging shows no significant mechanical property variations resulting from
forging reduct:on variation over the range in this study.

Mechanical properties, especially ductility, tend to display less uniform-
i*y as the material displays increasced structural and chemica1‘inhomoceneity.
Because the manufacturing method for the 155-mm and 105-mm preforms/forgings
does not include a secondary melting process (i.e., ESR or vacuum arc remel+inrg
(VAR)), these materials inherently possess more material variation than the
120-mm material and would most likely show the effects of this variation in

mechanical or physical property responses.




TABLE I. FORGING REDUCTIONS

(Cross-Sectional Areas Taken From Figure 1)

Ingot to Forging

706.9 in.2/210.6 in.2 = 3,36:1

Preform to Tube Forging
(Tapered Section of the Preform to Muzzle Diameter)
Minimum 31.5 in.2/31.5 in.2 = 1:1

Maximum 158.6 in.2/31,5 in.2 = §,03:1

Total Forging Reduction

Minimum 3.36 x 1

"

3.36:1

Maximum 3.36 x 5.03

16.90:1




TABLE II.

RELATIONSHIP BETWEEN PREFORM LOCATION,

FORGING REDUCTIONS, AND CROSS-SECTIONAL AREA

(120-mm Tube Forging Muzzle End Cross-Sectional Area = 31.5 in.?)

|
Preform Resulting '
Forging Location Area Diameter Location in Tubex |
Reduction (in.) (in.?) (in.2) {in.)
1
1:1 0-6 31.5 7.95 0-6
1.5:1 8.5 47.3 9.12 9.11 j
2.1 10.7 63.0 10.16 12.96 j
2.5:1 12.7 78.8 11.10 17.45 !
3:1 , 14.6 94.5 11.97 22.53
3.5:1 16.3 110.3 12.78 28.14 ?
1
4:1 17.9 126.0 13.55 34.26 !
|
4.5:1 19.5 141.8 14.27 40.79 g
i
5:1 20.9 157.5 14.95 47.64
|

*Measured from the muzzle end.




TABLE III. EXPERIMENTAL FORGING DATA
!
12 0'Clock 3 0'Clock 6 0'Clock 9 0'Clock |
Test ]
Disc Y.S. | T.S.| %RA | %EL Charpy Y.S. | T.S.| 3RA | %EL Charoy i
H
1 157 | 167 57 | 16 59 155 | 166 | 57| 16 57 ;
2 | A1)153 | 164 54 | 14 B1)62 |c1)158 | 167 | 55| 15 01)60 {
A2)155 | 165 56 | 15| B82)57 |C2)155 |165| 53 | 14 D2)5
t
3 A1)153 | 163 57 | 17 B1)58 [ C1)157 | 167 | 50| 14 01)57 |
A2)152 | 163 54 | 14 B2)59 |C2)156 | 166 | 54 | 14 D2)53
4 | A1)155 | 165 55 | 15 B1)56 |C1)155 |165| 53| 14 01)56 |
A2)153 | 164 54 | 14 B2)52 |C2)155 | 166 | 53| 14 02)54
5 A1)153 | 164 56 | 16 B1)52 | C1)155 | 165 | 57 | 17 D1)56 |
A2)153 | 164 56 | 16 B2)53 | C2)155 | 166 | 52 | 14 D2)52
6 |A1)155 | 165 57 | 16 B1)57 {C1)156 | 166! 54 | 14 D1)55 |
A2)155 | 165 54 | 14| B2)56 |C2)157 |168 | 56 | 16 02)50
7 | A1)157 | 166 57| 16| B1)54 |{C1)155 |165| 55| 15 D1)56
A2)155 | 166 56 | 16| B2)50 |C2)155 |165| 57| 16 D2)52 1
8 1A1)155 | 165 57| 16| B1)52 |C1)157 |167| 54| 14 D1)57 i
A2)155 | 166 57| 16| B2)51 |C2)157 |168 | 53| 14 02)49
9 | A1)155 | 165 60 | 17 B1)58 |C1)157 | 168 | 55| 15 D1)58 |
A2)155 | 165 57 | 16 B2)53 |c2)155 |167| 59| 16! D2)56 |
Br ?
End 158 | 169 56 | 15 56 158 | 168 | 53| 14 54 !

Y.S. - Yield Strength
T.S. - Tensile Strength
A1l,A2,B1,B82,C1,C2,D1,D02 - See Figure 2




TABLE 1IV.

GRAIN SIZE COMPARISON

Forging Average ASTM Average Grain
Disc # Reduction Grain Size Area x 1077 {in.:?
2 1.5:1 8.9 3.3
5 3:1 8.4 4.7
7 " 4:1 8.4 4.7
9 5:1 7.7 7.8
8
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Photomicrograph depicting tempered martensitic microstructure

found in all samples (400X, 2 percent nital).
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Figure 10. Photomicrographs of macroetched structure found in
mechanical property samples (50X, 1 percent picric).
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Figure 11. Typical oxide-type inclusions (dark spheres) found
in all samples. The arrow points to a silicate-type
stringer inclusion (100X).

Figure 12. Higher magnification photomicrograph of "worst”
stringer-type inclusion found in the subject
material (400X).
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ATTN: AFATL/MNF

EGLIN AFB, FL 32542-5434 1

METALS AND CERAMICS INFO CTR
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COLUMBUS, OH 43201-2693 1

PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
BENET LABORATORIES, SMCAR-CCB-TL,

WATERVLIET, NY 12189-4050, OF ANY ADORESS CHANGES.




